

ADVANCED GCE 4723/01

MATHEMATICS

Core Mathematics 3

MONDAY 2 JUNE 2008 Morning

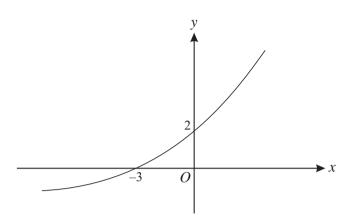
Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages)

List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.


INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

1 Find the exact solutions of the equation |4x - 5| = |3x - 5|. [4]

2

The diagram shows the graph of y = f(x). It is given that f(-3) = 0 and f(0) = 2. Sketch, on separate diagrams, the following graphs, indicating in each case the coordinates of the points where the graph crosses the axes:

(i)
$$y = f^{-1}(x)$$
, [2]

(ii)
$$y = -2f(x)$$
. [3]

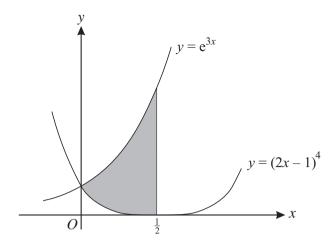
3 Find, in the form y = mx + c, the equation of the tangent to the curve

$$y = x^2 \ln x$$

at the point with x-coordinate e.

[6]

- The gradient of the curve $y = (2x^2 + 9)^{\frac{5}{2}}$ at the point P is 100. 4
 - (i) Show that the x-coordinate of P satisfies the equation $x = 10(2x^2 + 9)^{-\frac{3}{2}}$. [3]
 - (ii) Show by calculation that the x-coordinate of P lies between 0.3 and 0.4. [3]
 - (iii) Use an iterative formula, based on the equation in part (i), to find the x-coordinate of P correct to 4 decimal places. You should show the result of each iteration. [3]
- (a) Express $\tan 2\alpha$ in terms of $\tan \alpha$ and hence solve, for $0^{\circ} < \alpha < 180^{\circ}$, the equation 5


$$\tan 2\alpha \tan \alpha = 8.$$
 [6]

(b) Given that β is the acute angle such that $\sin \beta = \frac{6}{7}$, find the exact value of

(i)
$$\csc \beta$$
, [1]

(ii)
$$\cot^2 \beta$$
. [2]

@ OCR 2008 4723/01 Jun08 6

The diagram shows the curves $y = e^{3x}$ and $y = (2x - 1)^4$. The shaded region is bounded by the two curves and the line $x = \frac{1}{2}$. The shaded region is rotated completely about the x-axis. Find the exact volume of the solid produced.

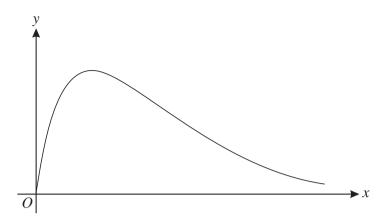
- 7 It is claimed that the number of plants of a certain species in a particular locality is doubling every 9 years. The number of plants now is 42. The number of plants is treated as a continuous variable and is denoted by *N*. The number of years from now is denoted by *t*.
 - (i) Two equivalent expressions giving N in terms of t are

$$N = A \times 2^{kt}$$
 and $N = Ae^{mt}$.

Determine the value of each of the constants A, k and m.

(ii) Find the value of t for which N = 100, giving your answer correct to 3 significant figures. [2]

[4]


- (iii) Find the rate at which the number of plants will be increasing at a time 35 years from now. [3]
- 8 The expression $T(\theta)$ is defined for θ in degrees by

$$T(\theta) = 3\cos(\theta - 60^{\circ}) + 2\cos(\theta + 60^{\circ}).$$

- (i) Express $T(\theta)$ in the form $A \sin \theta + B \cos \theta$, giving the exact values of the constants A and B. [3]
- (ii) Hence express $T(\theta)$ in the form $R \sin(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. [3]
- (iii) Find the smallest positive value of θ such that $T(\theta) + 1 = 0$. [4]

[Question 9 is printed overleaf.]

9

The function f is defined for the domain $x \ge 0$ by

$$f(x) = \frac{15x}{x^2 + 5}.$$

The diagram shows the curve with equation y = f(x).

(ii) The function g is defined for the domain $x \ge k$ by

$$g(x) = \frac{15x}{x^2 + 5}.$$

Given that g is a one-one function, state the least possible value of k.

(iii) Show that there is no point on the curve y = g(x) at which the gradient is -1. [4]

[1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4723 Core Mathematics 3

1	<u>Eith</u>	er: Obtain $x = 0$ Form linear equation with signs of $4x$ and $3x$ different State $4x - 5 = -3x + 5$ Obtain $\frac{10}{7}$ and no other non-zero value(s)	B1 M1 A1 A1	ignoring errors in working ignoring other sign errors or equiv without brackets or exact equiv
	<u>Or</u> :	Obtain $16x^2 - 40x + 25 = 9x^2 - 30x + 25$	B1	or equiv
		Attempt solution of quadratic equation	M1	at least as far as factorisation or use of formula
		Obtain $\frac{10}{7}$ and no other non-zero value(s)	A1	or exact equiv
		Obtain 0	B1	ignoring errors in working
2	(i)	Show graph indicating attempt at reflection in $y = x$	M1	with correct curvature and crossing negative y-axis and positive x-axis
		Show correct graph with <i>x</i> -coord 2 and <i>y</i> -coord -3 indicated	A1 2	
	(ii)	Show graph indicating attempt at reflection in <i>x</i> -axis	M1	with correct curvature and crossing each negative axis
		Show correct graph with <i>x</i> -coord -3 indicated and <i>y</i> -coord -4 indicated [SC: Incorrect curve earning M0 but both correct intercepts of the cor	A1 A1 pts indic	cated B1]
3		Attempt use of product rule	M1	+ form
		Obtain $2x \ln x + x^2 \cdot \frac{1}{x}$	A1	or equiv
		Substitute e to obtain 3e for gradient Attempt eqn of straight line with numerical gradient	A1 M1	or exact (unsimplified) equiv allowing approx values
		Obtain $y - e^2 = 3e(x - e)$	A1√	or equiv; following their gradient provided obtained by diffn attempt; allow approx values
		Obtain $y = 3ex - 2e^2$	A1	in terms of e now and in requested form
4	(i)	Differentiate to obtain form $kx(2x^2 + 9)^n$	M1	any constant k ; any $n < \frac{5}{2}$
		Obtain correct $10x(2x^2+9)^{\frac{3}{2}}$	A1	or (unsimplified) equiv
		Equate to 100 and confirm $x = 10(2x^2 + 9)^{-\frac{3}{2}}$	A1 3	AG; necessary detail required
	(ii)	Attempt relevant calculations with 0.3 and 0.4	M1	
		Obtain at least one correct value	A1	x $f(x)$ $x-f(x)$ $f'(x)$
				0.3 0.3595 -0.0595 83.4
		Obtain two correct values and conclude appropriately	A1	0.4 0.3515 0.0485 113.8 noting sign change or showing $0.3 < f(0.3)$ and $0.4 > f(0.4)$ or showing gradients either side of 100
			3	

(iii)	Obtain correct first iterate Carry out correct process Obtain 0.3553	B1 M1 A <u>1</u>	finding at least 3 iterates in all answer required to exactly 4 dp
	$ \begin{array}{c} [0.3 \rightarrow 0.35953 \rightarrow 0.35497 \rightarrow 0 \\ 0.35 \rightarrow 0.35575 \rightarrow 0.35528 \rightarrow \\ 0.4 \rightarrow 0.35146 \rightarrow 0.35563 \rightarrow 0 \end{array} $	0.35532	$(\to 0.35531);$
5 (a)	Obtain expression of form $\frac{a \tan \alpha}{b + c \tan^2 \alpha}$	M1	any non-zero constants a, b, c
	State correct $\frac{2 \tan \alpha}{1 - \tan^2 \alpha}$	A1	or equiv
	Attempt to produce polynomial equation in $\tan \alpha$	M1	using sound process
	Obtain at least one correct value of $\tan \alpha$	A1	$\tan \alpha = \pm \sqrt{\frac{4}{5}}$
	Obtain 41.8	A1	allow 42 or greater accuracy; allow 0.73
	Obtain 138.2 and no other values between 0 and 180	A1	allow 138 or greater accuracy
	[SC: Answers only 41.8 or B1; 138.2 or .	$\frac{1}{6}$	others B1]
(b)(i) State $\frac{7}{6}$	B1	
	, ,	1	
(ii	Attempt use of identity linking $\cot^2 \beta$ and $\csc^2 \beta$	M1	or equiv retaining exactness; condone sign errors
	Obtain $\frac{13}{36}$	A1	or exact equiv
		2	
6	Integrate $k_1 e^{nx}$ to obtain $k_2 e^{nx}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their k_1e^{nx}	A1	
	Substitute limits to obtain $\frac{1}{6}\pi(e^3-1)$ or $\frac{1}{6}(e^3-1)$	A1	or exact equiv perhaps involving e ⁰
	Integrate $k(2x-1)^n$ to obtain $k'(2x-1)^{n+1}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their $k(2x-1)^n$	A1	
	Substitute limits to obtain $\frac{1}{18}\pi$ or $\frac{1}{18}$	A1	or exact equiv
	Apply formula $\int \pi y^2 dx$ at least once	B 1	for $y = e^{3x}$ and/or $y = (2x-1)^4$
	Subtract, correct way round, attempts at volumes	M1	allow with π missing but must involve
y^2			
	Obtain $\frac{1}{6}\pi e^3 - \frac{2}{9}\pi$	A1	or similarly simplified exact equiv
		9	
7 (i)	State $A = 42$	B1	·
. (1)	State $k = \frac{1}{9}$	B1	or 0.11 or greater accuracy
	Attempt correct process for finding <i>m</i>	M1	involving logarithms or equiv
	Obtain $\frac{1}{9} \ln 2$ or 0.077	A1	or 0.08 or greater accuracy
(ii)	Attempt solution for <i>t</i> using either formula Obtain 11.3	M1 A1	using correct process (log'ms or T&I or or greater accuracy; allow 11.3 ± 0.1
	Differentiate to obtain form Be^{mt}	<u>2</u> M1	where B is different from A
(111)	Obtain 3.235e ^{0.077t}	M1 A1√	or equiv; following their A and m
	Obtain 47.9	A1 \(A1 \)	allow 48 or greater accuracy

8	(i)	Show at least correct $\cos\theta\cos 60 + \sin\theta\sin 60$ or $\cos\theta\cos 60 - \sin\theta\sin 60$ Attempt expansion of both with exact numerical values attempted Obtain $\frac{1}{2}\sqrt{3}\sin\theta + \frac{5}{2}\cos\theta$	B1 M1 A1	and with $\cos 60 \neq \sin 60$ or exact equiv
	(ii)	Attempt correct process for finding <i>R</i> Attempt recognisable process for finding α Obtain $\sqrt{7} \sin(\theta + 70.9)$	M1 M1 A1	whether exact or approx allowing \sin / \cos muddles allow 2.65 for R ; allow 70.9 ± 0.1 for α
	(iii)	Attempt correct process to find any value of θ + their α Obtain any correct value for θ + 70.9 Attempt correct process to find θ + their α in 3rd quadrant Obtain 131 [SC for solutions with no working shown: Correct and	M1 A1 M1 A1	-158, -22, 202, 338, or several values including this or greater accuracy and no other nly B4; 131 with other answers B2]
9	(i)	Attempt use of quotient rule Obtain $\frac{75-15x^2}{(x^2+5)^2}$ Equate attempt at first derivative to zero and rearrange to solvable form Obtain $x = \sqrt{5}$ or 2.24 Recognise range as values less than <i>y</i> -coord of st pt Obtain $0 \le y \le \frac{3}{2}\sqrt{5}$	*M1 A1 M1 A1 M1 A1 G	or equiv; allow u / v muddles or (unsimplified) equiv; this M1A1 available at any stage of question dep * M or greater accuracy allowing < here any notation; with \leq now; any exact equiv
	(ii)	State $\sqrt{5}$	B1√	following their x-coord of st pt; condone answer $x \ge \sqrt{5}$ but not inequality with k
_	(iii)	Equate attempt at first derivative to -1 and attempt simplification Obtain $x^4 - 5x^2 + 100 = 0$ Attempt evaluation of discriminant or equiv Obtain -375 or equiv and conclude appropriately	*M1 A1 M1 A1 4	and dependent on first M in part (i) or equiv involving 3 non-zero terms dep * M