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1 Find the exact solutions of the equation |4x − 5| = |3x − 5|. [4]
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The diagram shows the graph of y = f(x). It is given that f(−3) = 0 and f(0) = 2. Sketch, on separate
diagrams, the following graphs, indicating in each case the coordinates of the points where the graph
crosses the axes:

(i) y = f −1(x), [2]

(ii) y = −2f(x). [3]

3 Find, in the form y = mx + c, the equation of the tangent to the curve

y = x2 ln x

at the point with x-coordinate e. [6]

4 The gradient of the curve y = (2x2 + 9)5
2 at the point P is 100.

(i) Show that the x-coordinate of P satisfies the equation x = 10(2x2 + 9)−3
2. [3]

(ii) Show by calculation that the x-coordinate of P lies between 0.3 and 0.4. [3]

(iii) Use an iterative formula, based on the equation in part (i), to find the x-coordinate of P correct to
4 decimal places. You should show the result of each iteration. [3]

5 (a) Express tan 2α in terms of tan α and hence solve, for 0◦ < α < 180◦, the equation

tan 2α tan α = 8. [6]
(b) Given that β is the acute angle such that sin β = 6

7
, find the exact value of

(i) cosec β , [1]

(ii) cot2 β . [2]
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y = e3x

y x= (2 – 1)
4

The diagram shows the curves y = e3x and y = (2x − 1)4. The shaded region is bounded by the two
curves and the line x = 1

2
. The shaded region is rotated completely about the x-axis. Find the exact

volume of the solid produced. [9]

7 It is claimed that the number of plants of a certain species in a particular locality is doubling every
9 years. The number of plants now is 42. The number of plants is treated as a continuous variable and
is denoted by N. The number of years from now is denoted by t.

(i) Two equivalent expressions giving N in terms of t are

N = A × 2kt and N = Aemt.

Determine the value of each of the constants A, k and m. [4]

(ii) Find the value of t for which N = 100, giving your answer correct to 3 significant figures. [2]

(iii) Find the rate at which the number of plants will be increasing at a time 35 years from now. [3]

8 The expression T(θ) is defined for θ in degrees by

T(θ) = 3 cos(θ − 60◦) + 2 cos(θ + 60◦).
(i) Express T(θ) in the form A sin θ + B cos θ , giving the exact values of the constants A and B. [3]

(ii) Hence express T(θ) in the form R sin(θ + α), where R > 0 and 0◦ < α < 90◦. [3]

(iii) Find the smallest positive value of θ such that T(θ) + 1 = 0. [4]

[Question 9 is printed overleaf.]
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The function f is defined for the domain x ≥ 0 by

f(x) = 15x

x2 + 5
.

The diagram shows the curve with equation y = f(x).
(i) Find the range of f. [6]

(ii) The function g is defined for the domain x ≥ k by

g(x) = 15x

x2 + 5
.

Given that g is a one-one function, state the least possible value of k. [1]

(iii) Show that there is no point on the curve y = g(x) at which the gradient is −1. [4]
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4723 Core Mathematics 3 

1 Either:  Obtain x = 0 B1 ignoring errors in working 
      Form linear equation with signs of 4x and 3x different M1 ignoring other sign errors 
      State 4x – 5 = –3x + 5 A1 or equiv without brackets 
      Obtain 10

7  and no other non-zero value(s) A1 or exact equiv 
     4 
 Or: Obtain   B1 or equiv 2 216 40 25 9 30 25x x x x− + = − +
  Attempt solution of quadratic equation M1 at least as far as factorisation or use  
       of formula 
    Obtain 10

7  and no other non-zero value(s) A1 or exact equiv 
     Obtain  0 B1 ignoring errors in working 
     4 
 
2 (i) Show graph indicating attempt at reflection in y = x M1 with correct curvature and crossing negative    
         y-axis and positive x-axis 
  Show correct graph with x-coord  2  and y-coord  –3  
     indicated A1 
     2 
 (ii) Show graph indicating attempt at reflection in x-axis M1 with correct curvature and crossing each  
         negative axis 
  Show correct graph with x-coord  –3  indicated A1 
  … and y-coord  –4  indicated A1   
     [SC:  Incorrect curve earning M0 but both correct intercepts indicated          B1] 
     3 
 
3  Attempt use of product rule M1 … + … form   

  Obtain  2 12 ln .x x x
x

+  A1 or equiv 

   Substitute e to obtain 3e for gradient A1 or exact (unsimplified) equiv 
  Attempt eqn of straight line with numerical gradient  M1 allowing approx values 
  Obtain   A1√ or equiv;  following their gradient provided 2e 3e( e)y x− = −
       obtained by diffn attempt;  allow approx 
       values 
  Obtain   A1 in terms of e now and in requested form 23e 2ey x= −
     6 
 
4 (i) Differentiate to obtain form   M1 any constant k;  any n < 2(2 9)nkx x + 5

2  

  Obtain correct  
3
2210 (2 9)x x +  A1 or (unsimplified) equiv 

  Equate to 100 and confirm  
3
2210(2 9)x x −= +  A1 AG;  necessary detail required 

     3  
 (ii) Attempt relevant calculations with 0.3 and 0.4 M1 
  Obtain at least one correct value A1   x             f(x)       x – f(x)      f ( )x′   
        0.3       0.3595   –0.0595       83.4 
        0.4       0.3515     0.0485      113.8 
  Obtain two correct values and conclude appropriately A1 noting sign change or showing  
       0.3 < f(0.3) and 0.4 > f(0.4)  or showing    
          gradients either side of 100 
     3 
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 (iii) Obtain correct first iterate B1 
  Carry out correct process M1 finding at least 3 iterates in all 
  Obtain  0.3553 A1 answer required to exactly 4 dp 
     3 

[0.3  →  0.35953  →  0.35497  →  0.35534  →  0.35531; 
      0.35  →  0.35575  →  0.35528  →  0.35532  (→  0.35531); 

  0.4  →  0.35146  →  0.35563  →  0.35529  →  0.35532] 

5 (a) Obtain expression of form  2
tan
tan

a
b c

α
α+

   M1 any non-zero constants a, b, c 

  State correct  2
2 tan

1 tan
α

α−
 A1 or equiv 

  Attempt to produce polynomial equation in    M1 using sound process tanα
  Obtain at least one correct value of  A1 tanα 4

5tanα = ±  
  Obtain  41.8 A1 allow 42 or greater accuracy; allow 0.73  
  Obtain  138.2 and no other values between 0 and 180 A1 allow 138 or greater accuracy 
   [SC:  Answers only          41.8 or …    B1;        138.2 or … and no others     B1] 
     6 
 (b)(i) State  7

6  B1 
     1 
     (ii) Attempt use of identity linking 2cot β  and 2cosec β  M1 or equiv retaining exactness; condone sign  
            errors 
   Obtain  13

36  A1 or exact equiv 
     2 
 
6  Integrate   to obtain   M1 any constants involving π or not;  any n 1e

n xk 2 en xk

  Obtain correct indefinite integral of their  A1  1e
n xk

  Substitute limits to obtain  31
6 (e 1)π −   or  31

6 (e 1)−  A1 or exact equiv perhaps involving  0e

  Integrate    to obtain   M1 any constants involving π or not;  any n (2 1)nk x − 1(2 1)nk x +′ −

  Obtain correct indefinite integral of their  A1  (2 1)nk x −
  Substitute limits to obtain 1

18 π  or  1
18  A1 or exact equiv 

   Apply formula  at least once  B1 for 2dy xπ∫ 3e xy =  and/or  4(2 1)y x= −

  Subtract, correct way round, attempts at volumes M1 allow with π missing but must involve 
2y  

  Obtain  31 2
6 9eπ π−  A1 or similarly simplified exact equiv 

     9 
 
7 (i) State A = 42 B1 
  State  k = 1

9  B1 or  0.11 or greater accuracy 
  Attempt correct process for finding m M1 involving logarithms or equiv 
  Obtain  1

9 ln 2   or  0.077 A1 or 0.08 or greater accuracy  
     4 
  (ii) Attempt solution for t using either formula M1 using correct process (log’ms or T&I or …) 
  Obtain  11.3 A1 or greater accuracy;  allow 11.3 ± 0.1 
     2 
 (iii) Differentiate to obtain form  M1 where B is different from A 

0.077
emtB

  Obtain  3.235  A1√ or equiv;  following their A and m e t

  Obtain  47.9 A1 allow 48 or greater accuracy 
     3 
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8 (i) Show at least correct cos θ cos 60 + sin θ sin 60  or   
      cos θ cos 60 – sin θ sin 60 B1 
  Attempt expansion of both with exact numerical  
     values attempted M1 and with  cos60 sin 60≠
  Obtain  51

2 23 sin cosθ θ+  A1 or exact equiv 
     3 
 (ii) Attempt correct process for finding R M1 whether exact or approx 
  Attempt recognisable process for finding α M1 allowing sin / cos muddles 
  Obtain 7 sin( 70.9)θ +  A1 allow 2.65 for R;  allow 70.9 ± 0.1 for  α
     3 
 (iii) Attempt correct process to find any value of  θ + their α  M1 
  Obtain any correct value for θ + 70.9 A1 –158,  –22,  202,  338, …   
  Attempt correct process to find θ + their α in 3rd quadrant  M1 or several values including this 
  Obtain  131 A1 or greater accuracy and no other 
   [SC for solutions with no working shown:         Correct answer only     B4;    131 with other answers     B2] 
     4 
 
9 (i) Attempt use of quotient rule *M1 or equiv;  allow u / v muddles                                           

  Obtain  
2

2 2
75 15
( 5)

x
x

−
+

 A1 or (unsimplified) equiv;  this M1A1    

           available at any stage of question 
  Equate attempt at first derivative to zero and rearrange to  
                  solvable form M1 dep *M 
  Obtain  5x =   or  2.24 A1 or greater accuracy 
  Recognise range as values less than  y-coord of st pt M1 allowing < here 
  Obtain  3

20 5y≤ ≤  A1 any notation;  with ≤ now; any exact equiv 
     6 
 (ii) State  5  B1√ following their x-coord of st pt;  condone  
         answer 5x ≥  but not inequality with k 
     1 
 (iii) Equate attempt at first derivative to –1 and  
     attempt simplification *M1 and dependent on first M in part (i) 
  Obtain   A1 or equiv involving 3 non-zero terms 4 25 100x x− + = 0
  Attempt evaluation of discriminant or equiv  M1 dep *M 
  Obtain  –375  or equiv and conclude appropriately A1 
     4 
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